

Anomaly

User Manual

Overview

Anomaly is an analog 12dB/oct voltage controlled filter. It's an unwieldy take on a classic state variable filter topology. The lowpass and highpass outputs go through JFET harmonic saturation stages. The BAD (bonkers asymmetric distortion) output is the bandpass through an intentionally broken wavefolder.

Technical Specifications

- Width 6hp
- Depth 28mm
- Current draw 12mA @ +12V
- Current draw 12mA @ -12V

Inputs

IN

+/-10V range. Intended for audio signals. Can be used to ping the filter.

1V

+/-10V range. Standard 1 volt per octave control over the CUTOFF frequency. Can be used to ping the filter.

CV

+/-10V range. Exponential control over CUTOFF frequency. Maximum strength approximately 2 octaves per volt. Can be used to ping the filter.

Outputs

LOW

22V headroom. AC coupled. Lowpassed version of the IN signal.

HIGH

22V headroom. AC coupled. Highpassed version of the IN signal.

BAD

22V headroom. AC coupled. Bandpass through a broken wavefolder. At the edges of the bandpass slope, a "gating" effect can be noticed. At minimum resonance values, the BAD output behaves most like a normal bandpass output.

Knobs

CUTOFF

Exponential control of the cutoff frequency. Has a sub to supersonic range. This is capable of a full muting cut in either direction, although some highpass bleed may be present depending on input signal and resonance settings.

RESONANCE

Adds a resonant peak to the edge of the cutoff slope. Non self oscillating.

CV AMT

Attenuator for the CV input. At noon the response is approximately 1V/octave.

Tech History

The BAD output is based on a guitar pedal we use to make circa 2014 called the <u>Asstone</u>. The Asstone was based on the Devi Ever Soda Meiser, but with the use of a PNP darlington pair transistor and different filter caps. And, if I were to venture a guess, the Soda Meiser is based on the Lockhart wavefolder, but with one of the transistors either intentionally or accidentally put in backwards.

Note on CV Bleedthrough & 'Thump'

CV bleedthrough is when the **CV input signal** can be heard from the **audio output** with nothing at the **audio input**. Most of the time CV bleedthrough is undetectable and not at all a problem. Basically all analog VCAs and VCFs will have *some* level of CV bleedthrough. The Anomaly is no exception.

Here's a pro tip for minimizing Anomaly bleedthrough at the LOWPASS output. There is a tradeoff between CV bleedthrough and lowest possible cutoff point. To get very low CV bleedthrough, bring the cutoff knob to the lowest desirable point *but not further*. Consider not fully closing the VCF and using a VCA later in the patch to kill the audio.